Fast algorithm for multiplicative noise removal

نویسندگان

  • Bao-Li Shi
  • Lihong Huang
  • Zhi-Feng Pang
چکیده

In this work, we consider a variational restoration model for multiplicative noise removal problem. By using a maximum a posteriori estimator, we propose a strictly convex objective functional whose minimizer corresponds to the denoised image we want to recover. We incorporate the anisotropic total variation regularization in the objective functional in order to preserve the edges well. A fast alternating minimization algorithm is established to find the minimizer of the objective functional efficiently. We also give the convergence of this minimization algorithm. A broad range of numerical results are given to prove the effectiveness of our proposed model. Crown Copyright 2011 Published by Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weberized Total Variation Regularization-Based Image Multiplicative Noise Removal Algorithm

Multiplicative noise removal is of momentous significance in coherent imaging systems and various image processing applications. This paper proposes a new nonconvex variational model for multiplicative noise removal under the Weberized total variation (TV) regularization framework. Then, we propose and investigate another surrogate strictly convex objective function for Weberized TV regularizat...

متن کامل

Fast Iterative Algorithms for Total Variation Based Multiplicative Noise Removal Model

This paper presents fast iterative algorithms for solution of PDEs arisen from minimization of multiplicative noise removal model [14]. This model may be regarded as an improved version of the Total Variation (TV) de-noising models. For the TV and the multiplicative noise removal models, their associated Euler-Lagrange equations are highly nonlinear Partial Differential Equations (PDEs). For th...

متن کامل

A fast adaptive reweighted residual-feedback iterative algorithm for fractional-order total variation regularized multiplicative noise removal of partly-textured images

In this paper, we introduce a simple reweighted residual-feedback iterative (RRFI) algorithmwhich provides a general framework to solve the fractional-order total variation regularized models with different fidelity terms. We provide a sufficient condition for the convergence of this algorithm. As an application, we use this algorithm to solve the TV and fractional-order TV regularized models w...

متن کامل

An Adaptive Fractional-Order Variation Method for Multiplicative Noise Removal

This paper aims to develop a convex fractional-order variation model for image multiplicative noise removal, where the regularization parameter can be adjusted adaptively according to balancing principle at each iterations to control the trade-off between the fitness and smoothness of the denoised images. In the light of the saddle-point theory, a primal-dual algorithm has been applied to solve...

متن کامل

Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal

Owing to the edge preserving ability and low computational cost of the total variation (TV), variational models with the TV regularization have been widely investigated in the field of multiplicative noise removal. The key points of the successful application of these models lie in: the optimal selection of the regularization parameter which balances the data-fidelity term with the TV regulariz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Visual Communication and Image Representation

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012